√2004*2005*2006*2007+1

2个回答

  • √(2004×2005×2006×2007+1)

    为方便起见,设n=2004,所以原式成为:

    √(2004×2005×2006×2007+1)

    =√[n(n+1)(n+2)(n+3)+1]

    =√[n(n+3)×(n+1)(n+2)+1]

    =√[(n^2+3n)(n^2+3n+2)+1]

    =√[(n^2+3n)^2+2(n^2+3n)+1]

    =√[(n^2+3n)+1]^2

    =√(n^2+3n+1)^2

    =n^2+3n+1

    =n(n+3)+1

    =2004×(2004+3)+1

    =2004×2007+1

    =4022028+1

    =4022029