函数f(x)=sin(2x-
π
6 )-2cos(x-
π
4 )cos(x+
π
4 )+1
=
3
2 sin2x-
1
2 cos2x-2(
2
2 cosx+
2
2 sinx)(
2
2 cosx-
2
2 sinx) +1
=
3
2 sin2x-
1
2 cos2x-cos2x +1
=
3 sin(2x-
π
3 ) + 1.
(1)f(x)的最小正周期为:π;
(2)∵x∈[0,
π
2 ],∴ -
π
3 ≤2x-
π
3 ≤
2π
3
∴ -
3
2 ≤sin(2x-
π
3 ) ≤1 ,
所以
3 sin(2x-
π
3 ) + 1∈ [-
1
2 ,
3 +1] ;
故函数的值域为: [-
1
2 ,
3 +1]