a(n+2)=(1+cos²nл/2)an+4sin²nл/2
=[1+(1+cosnπ)/2]an+2(1-cosnπ)
①当n∈2N时,a(n+2)=2an
②当n∈2N+1时,a(n+2)=an+4
a3=a1+4=4
a4=2*a2=4
a5=a3+4=8
a6=2*a4+4=12
Sk=a1+a3+a5+...+a(2k+1)
=(k+1)a1+k(k+1)*4/2
=2k²+2k
Tk=a2+a4+a6+...+a(2k)
=a2*(2^k-1)(2-1)
=2^(k+1)-2
Wk=2^Sk/(2+Tk)=2^(2k²+2k)/2^(k+1)>1
2^(2k²+2k)>2^(k+1)
2k²+2k>k+1
2k²+k-1>0
(2k-1)(k+1)>0
k1/2
∴k≥1(k∈N)