解题思路:根据正方形的性质求出∠BOE=∠AOF=90°,BO=AO,再根据同角的余角相等求出∠OBE=∠OAF,然后利用“角边角”证明△AOF和△BOE全等,根据全等三角形对应边相等即可得证.
OE=OF.
理由如下:∵四边形ABCD是正方形,
∴∠BOE=∠AOF=90°,BO=AO,
又∵AG⊥EB,
∴∠OAF+∠OEB=90°,
∠OEB+∠OBE=90°,
∴∠OBE=∠OAF,
在△AOF和△BOE中,
∠OBE=∠OAF
BO=AO
∠AOF=∠BOE=90°,
∴△AOF≌△BOE(ASA),
∴OE=OF.
点评:
本题考点: 正方形的性质;全等三角形的判定与性质.
考点点评: 本题考查了正方形的性质,全等三角形的判定与性质,此类题目理解并掌握题目提供的信息与思路是解题的关键.