小兰将连续偶数2、4、6、8、10、12、14、16、…逐个相加,得结果2012.验算时发现漏加了一个数,那么,这个漏加

3个回答

  • 解题思路:把这个偶数数列看成一个首项是2,公差是2的等差数列,设总项数是n,根据等差数列的通项公式为:an=a1+(n-1)d以及前n项和公式为:Sn=n(a1+an)÷2,找出n的取值,进而求解.

    设总项数是n,那么最后一项可以表示为:

    an=a1+(n-1)d=2+(n-1)×2=2+2n-2=2n;

    这些数的总和是:

    Sn=n(a1+an)÷2,

    =n(2+2n)÷2,

    =n+n2

    =n(n+1);

    经代入数值试算可知:

    当n=44时,数列和=1980,

    当n=45时,数列和=2070,

    可得:1980<2012<2070,

    所以这个数列一共有45项;

    45×(45+1)-2012,

    =2070-2012,

    =58;

    答:这个漏加的数是58.

    故答案为:58.

    点评:

    本题考点: 数字问题.

    考点点评: 解决本题需要熟记等差数列的通项公式以及求和公式,并进行灵活运用.