1、若方程1/(3-2x) + m/(2x+3) = 4x/(4x²-9)的解为非负数,求m的取值范围.

4个回答

  • 1.原方程两边同乘上(2x+3)*(2x-3),得:

    -(2x+3)+(2x-3)m=4x

    去括号,移项,合并同类项得:

    -3-3m=x(6-2m)

    ∴x=(-3-3m)/(6-2m)

    ∵x>=0

    ∴(-3-3m)/(6-2m)>=0

    ∴m<=-1或m>3

    2.原方程两边同乘(x-1)(x+2),得:

    2X-3=A(X+2)+B(x-1)

    2X-3=(A+B)X+2A-B

    ∴A+B=2

    ∴2A-B=-3

    解得A=-1/3

    B=7/3

    3.(1)设第一次单价为x元,第二次单价为y元,由题意得:

    甲:(x+y)/2

    乙:1600/(800/x+800/y)

    =2xy/(x+y)

    (2)当 甲>乙时

    (x+y)/2 >2xy/(x+y)

    解得:x>y

    当 甲=乙时

    (x+y)/2 =2xy/(x+y)

    解得:x=y

    当 甲<乙时

    (x+y)/2 <2xy/(x+y)

    解得:x<y

    所以,当第一次单价大于第二次单价时,甲更合算;

    当第一次单价等于第二次单价时,都合算;

    当第一次单价小于第二次单价时,乙更合算;