左极限是 lim
{[2+e^(1/x)]/[1+e^(4/x)]}-sinx/x
= (2+0)/(1+0)-1 = 1;
右极限是 lim
{[2+e^(1/x)]/[1+e^(4/x)]}+sinx/x
= lim
{[2e^(-4/x)+e^(-3/x)]/[e^(-4/x)+1]}+sinx/x
= (0+0)/(0+1)+1 = 1.
故所求极限是 1.
左极限是 lim
{[2+e^(1/x)]/[1+e^(4/x)]}-sinx/x
= (2+0)/(1+0)-1 = 1;
右极限是 lim
{[2+e^(1/x)]/[1+e^(4/x)]}+sinx/x
= lim
{[2e^(-4/x)+e^(-3/x)]/[e^(-4/x)+1]}+sinx/x
= (0+0)/(0+1)+1 = 1.
故所求极限是 1.