定义域为R的有奇偶性的函数必定过原点吗?
2个回答
不一定
奇函数经过原点,因为它是关于原点对称
但是偶函数就不一定了
举个例子f(x)=2^|x| 这个定义域为R的偶函数
但是它不经过原点
相关问题
判断函数是否含有奇偶性是用定义域敢于原点对称,可指数函数的定义域为R,不是关于原点对称吗,为何不含有奇偶性
判断函数奇偶性的前提定义域原点对称?
定义域不在R上的函数还奇偶性吗
定义域(奇偶性)在奇偶性中,定义域要关于原点对称,那什么样子才叫定义域关于原点对称呢?
请问这种幂函数如何判断奇偶性 还有,偶函数的定义域一定关于原点对称吗
怎样用函数的定义域是否关于原点对称来判断函数的奇偶性
定义域不对称有奇偶性吗?
函数的奇偶性这个式子是啥意思?函数可以无奇偶性,但若定义域关于原点对称,那么函数:什么意思啊?
在判断函数奇偶性时,如果定义域关于原点对称是什么函数
为什么函数的奇偶性叫奇偶性,它与关于什么轴、原点对称有什么直接或间接的关系吗.