我们先来证明cos(A-B)=cosAcosB+sinAsinB
在标准圆中.AB为直径.长度为1 由圆的性质可知角ADB和角ACB为90度.另做一条垂直线CE于AD上.
令角A为角BAC
角B为角DAC
则角(A-B)为角BAD
证明如下: cos(A-B)=AD/AB=AD ①cosA=AC/AB=AC ②sinA=BC/AB=BC ③cosB=AE/AC ④sinB=CE/AC
联立①③可知 cosB=AE/cosA
即cosAcosB=AE.
所以要证明cos(A-B)=cosAcosB+sinAsinB
即要证明AD=AE+sinAsinB
又AD=AE+ED
即只要证明sinAsinB=ED即可
即要证明BC*CE/AC=ED
即要证明CE/AC=ED/BC
注意到三角形CEF相似于三角形BDF(三个角相同),则可知道ED/BC=EF/CF(相似三角形定理) 所以要证明命题.只需要证明CE/AC=EF/CF 注意到角ECF+角ECA=90度并且角ECA+角CAE=90度可知角ECF=角EAC.又角CEF=角AEC=90度.可推出三角形AEC相似于三角形CEF
即可以证明CE/AC=EF/CF
即证明了cos(A-B)=cosAcosB+sinAsinB