解法一:(直接观察法)
∵z=(x-1)^2+(y+1)^2
∴当x=1,y=-1时,z=0
故当x=1,y=-1时,函数z=(x-1)^2+(y+1)^2取得极值z=0.
解法二:(多元函数极值法)
∵z=(x-1)^2+(y+1)^2
∴令αz/αx=2(x-1)=0,αz/αy=2(y+1)=0
==>x=1,y=-1
故当x=1,y=-1时,函数z=(x-1)^2+(y+1)^2取得极值z=0.
解法一:(直接观察法)
∵z=(x-1)^2+(y+1)^2
∴当x=1,y=-1时,z=0
故当x=1,y=-1时,函数z=(x-1)^2+(y+1)^2取得极值z=0.
解法二:(多元函数极值法)
∵z=(x-1)^2+(y+1)^2
∴令αz/αx=2(x-1)=0,αz/αy=2(y+1)=0
==>x=1,y=-1
故当x=1,y=-1时,函数z=(x-1)^2+(y+1)^2取得极值z=0.