先化简后面的三角函数
cosαcosβ-(√3)sinαcosβ-(√3)cosαsinβ-sinαsinβ=(cosαcosβ-sinαsinβ)-√3(sinαcosβ+cosαsinβ)
=cos(α+β)-√3sin(α+β)=2(1/2cos(α+β)-√3/2sin(α+β))=2(cosπ/3cos(α+β)-sinπ/3sin(α+β))
=2cos(α+β+π/3)
又因为α,β是方程的两个根,所以α+β=-(b/a)=π/12
2cos(α+β+π/3)=2cos(5π/12)