如图,已知Rt△SBC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F连接CD,EB.求证CF=EF

3个回答

  • 证法一:连接CE,

    ∵Rt△ABC≌Rt△ADE,

    ∴AC=AE.

    ∴∠ACE=∠AEC.

    又∵Rt△ABC≌Rt△ADE,

    ∴∠ACB=∠AED.

    ∴∠ACE=∠ACB=∠AEC-∠AED.

    即∠BCE=∠DEC.

    ∴CF=EF.

    证法二:∵Rt△ABC≌Rt△ADE,

    ∴AC=AE,AD=AB,∠CAB=∠EAD,

    ∴∠CAB-∠DAB=∠EAD-∠DAB.

    即∠CAD=∠EAB.

    ∴CD=EB,∠ADC=∠ABE.

    又∵∠ADE=∠ABC,

    ∴∠CDF=∠EBF.

    又∵∠DFC=∠BFE,

    ∴△CDF≌△EBF.

    ∴CF=EF.

    证法三:连接AF,

    ∵Rt△ABC≌Rt△ADE,

    ∴AB=AD,BC=DE,∠ABC=∠ADE=90°.

    又∵AF=AF,

    ∴Rt△ABF≌Rt△ADF(HL).

    ∴BF=DF.

    又∵BC=DE,

    ∴BC-BF=DE-DF.

    即CF=EF.