(1)an=sn-(sn-1)且an=(√sn+√(sn-1))/2所以(√sn+√(sn-1))/2 = sn-(sn-1)
√sn - √(sn-1)= 1/2 √sn是一个等差数列得证
(2)又(1)得√sn = (n +1)/2,sn=[(n +1)^2]/4
an=sn - sn-1=[(n +1)^2]/4 - (n^2)/4=(2n+1)/4
(1)an=sn-(sn-1)且an=(√sn+√(sn-1))/2所以(√sn+√(sn-1))/2 = sn-(sn-1)
√sn - √(sn-1)= 1/2 √sn是一个等差数列得证
(2)又(1)得√sn = (n +1)/2,sn=[(n +1)^2]/4
an=sn - sn-1=[(n +1)^2]/4 - (n^2)/4=(2n+1)/4