又是一道数列的最后一题.

2个回答

  • (1)

    f(x)=ln(1+x) -x(1+ λx)/(1+x)

    f(0) = 0

    ie To find min λ st f'(x) ≤ 0

    f'(x) = 1/(1+x) - [(1+x)(1+2λx)-x(1+λx) ]/(1+x)^2

    ={1+x -[(1+x)(1+2λx)-x(1+λx) ]}/(1+x)^2

    ={1+x -[1+(2λ+1)x+2λx^2-x-λx^2) ]}/(1+x)^2

    = ( -λx^2 -(2λ-1)x )/(1+x)^2

    = -(λx^2 +(2λ-1)x )/(1+x)^2

    2λ-1=0

    min λ =1/2 st. f'(x) ≤0

    f(x)=ln(1+x) -x(1+ λx)/(1+x) ≤f(0) =0

    (2)

    By MI

    n=1

    a2 -a1 +1/4

    =1+1/2-1 +1/4

    =3/4>ln2

    p(1) is true

    Assume p(k) is true

    a(2k)-ak +1/(4k) > ln2

    for n=k+1

    LS =a(2k+2)-a(k+1) - 1/[4(k+1)]

    = 1/(k+2)+1/(k+3)+...+1/(2k+2) +1/[4(k+1)]

    =[1/(k+1)+1/(k+2)+...+1/(2k) +1/(4k) ] +1/(2k+1)+1/(2k+2) - 1/(k+1)- 1/(4k) + 1/[4(k+1)]

    > ln2 + 1/(2k+1)+1/(2k+2) - 1/(k+1)- 1/(4k) + 1/[4(k+1)]

    = ln2 + 1/(2k+1)-1/[4(k+1)] - 1/(4k)

    consider

    1/(2k+1)-1/[4(k+1)] - 1/(4k)

    = [16k(k+1)-4k(2k+1)-4(2k+1)(k+1)] /[16k(2k+1)(k+1)]

    = (6k^2+9k-2)/[16k(2k+1)(k+1)] >0

    =>p(k+1) is true

    By principle of MI, it is true for all +ve integer n