先将被积函数化为两个简单函数之和,然后分项积分.
原式=-2∫1/[(t-1)(t+1)]dt(下面裂项)
=-∫{[1/(t-1)]-[1/(t+1)]}dt(下面分项再用凑微分法)
=-{∫[1/(t-1)]d(t-1)-∫[1/(t+1)]d(t+1)}
=-[ln|t-1|-ln|t+1|]+C
=-ln|(t-1)/(t+1)|+C
That' s all.
先将被积函数化为两个简单函数之和,然后分项积分.
原式=-2∫1/[(t-1)(t+1)]dt(下面裂项)
=-∫{[1/(t-1)]-[1/(t+1)]}dt(下面分项再用凑微分法)
=-{∫[1/(t-1)]d(t-1)-∫[1/(t+1)]d(t+1)}
=-[ln|t-1|-ln|t+1|]+C
=-ln|(t-1)/(t+1)|+C
That' s all.