设an=a1q^(n-1)
Sn=a1(1-q^n)/(1-q)
Sn+1=a1(1-q^(n+1))/(1-q)
Sn+2=a1(1-q^(n+2))/(1-q)
根据题意有:
Sn-Sn+1=(Sn+2)-Sn,整理得:q^2+q-2=0
解得:q=-2或q=1
当q=1时,等比数列蜕变为公差为0的等差数列,也满足题中要求.
设an=a1q^(n-1)
Sn=a1(1-q^n)/(1-q)
Sn+1=a1(1-q^(n+1))/(1-q)
Sn+2=a1(1-q^(n+2))/(1-q)
根据题意有:
Sn-Sn+1=(Sn+2)-Sn,整理得:q^2+q-2=0
解得:q=-2或q=1
当q=1时,等比数列蜕变为公差为0的等差数列,也满足题中要求.