解数.有关於分式因解*后代表次数1.求证:2*48 - 1能被60到70之间的两个整数整除,井求出这两个数2.若a为正整

1个回答

  • 1

    2^48 - 1=(2^24+1)(2^24-1)=(2^24+1)(2^12+1)(2^12-1)=(2^24+1)(2^12+1)(2^6+1)(2^6-1)=(2^24+1)(2^12+1)(2^6+1)(2^6-1)=)=(2^24+1)(2^12+1)×65×63

    这两个数是63和65.

    2.

    当a=1或2时,上式分别为质数7和13;a>2时上式是合数,可通过因式分解证明:

    原式=(a^4+6a^2+9)-9a^2

    =(a^2+3)^2-(3a)^2

    =(a^2+3+3a)*(a^2+3-3a)

    使a^2+3-3a>1

    推出a>2

    所以当a=1或2时,上式为质数,a>2时上式是合数

    3.

    3^24 - 1

    =(3^12 - 1)(3^12 + 1)

    =(3^6 - 1)(3^12 + 1)

    =(3^3 - 1)(3^3 + 1)(3^12 + 1)

    =26×28×(3^12 + 1)

    =2×(13×7)×(3^12 + 1)

    =2×91×(3^12 + 1)

    ∴3*24 - 1能被91整除

    4.

    x^4 + 6x^3y + 8x^2 y*2- 6xy^3 - 9y^4

    =(x^4 - y^4)+(6x^3y - 6xy^3)+(8x^2 y^2 - 8y^4)

    =(x^2 + y^2)(x^2 - y^2)+6xy(x^2 - y^2)+8y^2(x^2 - y^2)

    =(x^2 + y^2+6xy+8y^2)(x^2 - y^2)

    =(x^2 +6xy+9y^2)(x - y)(x + y)

    =(x+3y)^2 (x - y)(x + y)