a+b=(sina+1,√3+cosa)
|a+b|²=(sina+1)²+(√3+cosa)²
=sin²a+1+2sina+3+cos²a+2√3cosa
=5+2sina+2√3cosa
=5+4[sina*cos(π/3)+cosa*sin(π/3)]
=5+4sin(a+π/3)
因为正弦的最大值是1
所以 |a+b|²的最大值是9
|a+b|的最大值是3
a+b=(sina+1,√3+cosa)
|a+b|²=(sina+1)²+(√3+cosa)²
=sin²a+1+2sina+3+cos²a+2√3cosa
=5+2sina+2√3cosa
=5+4[sina*cos(π/3)+cosa*sin(π/3)]
=5+4sin(a+π/3)
因为正弦的最大值是1
所以 |a+b|²的最大值是9
|a+b|的最大值是3