n(n+1)(n+2)(n+3)+1
=(n^2+3n)(n^2+3n+2)+1
=[(n^2+3n+1)-1][(n^2+3n+1)+1]+1
=[(n^2+3n+1)^1-1]+1
=(n^2+3n+1)^2,
√[n(n+1)(n+2)(n+3)+1]=n^2+3n+1,
n=2004时,得到
√[2004*2005*2006*2007+1}
=2004^2+3*2004+1
=4022029.
n(n+1)(n+2)(n+3)+1
=(n^2+3n)(n^2+3n+2)+1
=[(n^2+3n+1)-1][(n^2+3n+1)+1]+1
=[(n^2+3n+1)^1-1]+1
=(n^2+3n+1)^2,
√[n(n+1)(n+2)(n+3)+1]=n^2+3n+1,
n=2004时,得到
√[2004*2005*2006*2007+1}
=2004^2+3*2004+1
=4022029.