(1)一般式:y=ax2+bx+c(a≠0)=a (x+
b
2a)2+
4ac−b2
4a,
故对称轴方程是x=-[b/2a],顶点为(-[b/2a],
4ac−b2
4a),
(2)两点式:y=a(x-x1)(x-x2)=a(x2-(x1+x2)x+x1x2)=a(x−
x1+x2
2)2-a
(x1−x2)2
4;
对称轴方程是 x=
x1+x2
2,与x轴的交点为 (x1,0)、(x2,0),
(3)顶点式:y=a(x-k)2+h;对称轴方程是 x=k,顶点为 (k,h ),
综上,故答案为 (1)x=-[b/2a],(-[b/2a],
4ac−b2
4a); (2)x=
x1+x2
2,(x1,0)、(x2,0);(3)x=k,(k,h ).