求通解(1+x^2)y'+y=arctanx
[(1+x^2)y'+y]e^(arctanx)/(1+x^2)=arctanx*e^(arctanx)"}}}'>

1个回答

  • ∵(1+x^2)y'+y=arctanx

    ==>[(1+x^2)y'+y]e^(arctanx)/(1+x^2)=arctanx*e^(arctanx)/(1+x^2)

    (等式两端同乘e^(arctanx)/(1+x^2))

    ==>e^(arctanx)dy+ye^(arctanx)dx/(1+x^2)=arctanx*e^(arctanx)dx/(1+x^2)

    ==>e^(arctanx)dy+yd(e^(arctanx))=arctanxd(e^(arctanx))

    ==>d(ye^(arctanx))=arctanxd(e^(arctanx))

    ==>ye^(arctanx)=arctanx*e^(arctanx)-e^(arctanx)+C (应用分部积分法,C是常数)

    ==>y=arctanx-1+Ce^(-arctanx)

    ∴原方程的通解是y=arctanx-1+Ce^(-arctanx).