∫sinx/cosx√(5-4cosx)dx

2个回答

  • 设√(5-4cosx)=t,则sinxdx=tdt/2

    ∴原式=∫(tdt/2)/[t(5-t²)/4]

    =2∫dt/(5-t²)

    =(1/√5)∫[1/(√5+t)+1/(√5-t)]dt

    =(1/√5)[ln│√5+t│-ln│√5-t│]+C (C是积分常数)

    =(1/√5)ln│(√5+t)/(√5-t)│+C

    =(1/√5)ln│[√5+√(5-4cosx)]/[√5-√(5-4cosx)]│+C