题目错了吧,应该是a/x+b/y+c/z=0 x/a + y/b + z/c =1 (x/a + y/b + z/c)^2 =1 x·x / a·a + y·y / b·b + z·z / c·c+2(xy/ab+xz/ac+yz/bc)=1 x·x / a·a + y·y / b·b + z·z / c·c+2(xyz/abc) *(a/x+b/y+c/z)=1 因为a/x+b/y+c/z=0 所以原式为x·x / a·a + y·y / b·b + z·z / c·c=1
已知a/x + b/x + c/x =0,x/a + y/b + z/c =1 ,求证 x·x / a·a + y·y
1个回答
相关问题
-
已知a(y-z)+b(z-x)+c(x-y)=0,求证:(x-y)/(a-b)=(y-z)/(b-c)=(z-x)/(c
-
已知:a/(z-2y+x)=b/(x-2z+y)=c/(y-2x+z),a+b+c≠0.求证:(a+b)(b+c)(c+
-
已知x.y.z均为实数x+y+z≠0 a=x/y+z b=y/z+x c=z/x+y那么a/a+1+b/b+1+c/c+
-
已知x\/(b+c-a)=y\/(c+a-b)=z\/(a+b-c),求证(b-c)x+(c-a)y+(a-b)z=0
-
x-y/a=y-z/b=z-x/c,x,y,z互不相等,求证:a+b+c=0
-
已知x/y+z=a,y/x+z=b,z/x+y=c求a/a+1+b/b+1+c/c+1
-
1.已知x,y,z∈R,且x+y+z=a 求证x^2+y^2+z^2≥(a^2)/3 2.已知a、b、c>0,a+b+c
-
x/y+z=a,y/z+x=b,z/x+y=c,x+y+z不等于0,求a/1+a+b/1+b+c/1+c
-
已知x=a/(b+c),y=b/(c+a),z=c/(a+b),且a+b+c不等于0,求x/(1+x)+y/(1+y)+
-
已知:[x/a−b=yb−c=zc−a],求证x+y+z=0.