∫ f(x) dx = lnx/x + C
f(x) = (x * 1/x - lnx * 1)/x² = (1 - lnx)/x²
∫ xf'(x) dx = ∫ x df(x)
= xf(x) - ∫ f(x) dx
= x * (1 - lnx)/x² - (lnx/x + C)
= 1/x - 2lnx/x + C''
∫ f(x) dx = lnx/x + C
f(x) = (x * 1/x - lnx * 1)/x² = (1 - lnx)/x²
∫ xf'(x) dx = ∫ x df(x)
= xf(x) - ∫ f(x) dx
= x * (1 - lnx)/x² - (lnx/x + C)
= 1/x - 2lnx/x + C''