过抛物线E:x²=2py(p>0)的焦点F作斜率为k的动直线l与E交于A,B两点,E在A,B两点处的切线交于点

1个回答

  • (1)

    F(0,p/2)

    k=0时,则A为(p,p/2) B为(-p,p/2)

    设M为(m,m²/2p)

    则AM斜率为 (m²/2p-p/2)/(m-p)

    BM斜率为 (m²/2p-p/2)/(m+p)

    斜率之差的绝对值为

    |(m²/2p-p/2)/(m+p)-(m²/2p-p/2)/(m-p)|

    =1

    (2)

    直线AB为y=kx+p/2

    设A(x1,y1) B(x2,y2)

    A点处切线斜率为y'=x1/p

    则切线为2py-2x1x+x1²=0

    同理B点处切线为2py-2x2x+x2²=0

    联立求的P((x1+x2)/2,x1x2/2p)

    联立AB和抛物线:

    x²-2pkx-p²=0

    x1+x2=2pk,x1x2=-p²

    则x1x2/2p=-p²/2p=-p/2

    即P点的纵坐标为定值-p/2

    即P点在定直线y=-p/2上