(1)
F(0,p/2)
k=0时,则A为(p,p/2) B为(-p,p/2)
设M为(m,m²/2p)
则AM斜率为 (m²/2p-p/2)/(m-p)
BM斜率为 (m²/2p-p/2)/(m+p)
斜率之差的绝对值为
|(m²/2p-p/2)/(m+p)-(m²/2p-p/2)/(m-p)|
=1
(2)
直线AB为y=kx+p/2
设A(x1,y1) B(x2,y2)
A点处切线斜率为y'=x1/p
则切线为2py-2x1x+x1²=0
同理B点处切线为2py-2x2x+x2²=0
联立求的P((x1+x2)/2,x1x2/2p)
联立AB和抛物线:
x²-2pkx-p²=0
x1+x2=2pk,x1x2=-p²
则x1x2/2p=-p²/2p=-p/2
即P点的纵坐标为定值-p/2
即P点在定直线y=-p/2上