x+y=1,xy=(k+1)/4k
1.原式=2x*2+2y*2-5xy
=2[(x+y)*2-2xy]-5xy
=2(x+y)*2-9xy
=2-9(k+1)/4k=-3/2
k=9/5
b*2-4ac=16k*2-4k(k+1)=12k*2-4k=128.88>0
k=9/5
2.原式=(x*2+y*2)/xy-2
=[(x+y)*2-2xy]/xy-2
={1-[2(k+1)/4k]}/[(k+1)/4k]-2
=(2k-2)/(k+1)-2
=-4/(k+1)
要使此式为整数,则k+1能被-4整除
k+1=1,-1,2,-2,4,-4
k=0,-2,1,-3,3,-5