把一张长18厘米、宽12厘米的长方形纸片剪成小正方形纸片,如果小正方形纸片的边长是整厘米数,共有多少种不同的可能?分别能

1个回答

  • 解题思路:只要把它截成正方形纸片,则这个正方形纸片的边长应为长方形长与宽的公因数,求出正方形的边长,然后计算长与宽里面分别有几个边长,相乘的积就是要截的正方形的个数;有几个公因数就有几种可能;画表列举出来,即可得解.

    18=2×3×3

    12=2×2×3

    18和12个公因数有1、2、3、6;

    边长=1厘米,能剪出小正方形纸片:18×12=216(块);

    边长=2厘米,能剪出小正方形纸片:(18÷2)×(12÷2)=9×6=54(块);

    边长=3厘米,能剪出小正方形纸片:(18÷3)×(12÷3)=6×4=24(块);

    边长=6厘米,能剪出小正方形纸片:(18÷6)×(12÷6)=3×2=6(块);

    答:共有4种不同的可能,分别能剪出216、54、24、6块小正方形纸片.

    点评:

    本题考点: 公因数和公倍数应用题.

    考点点评: 灵活运用公因数的求法来解决实际问题,注意1也是公因数.

相关问题