在三角形ABC中,内角A,B,C所对的边分别是a,b,c,已知三角形ABC的面积S=a²-(b-c)²

1个回答

  • 此题缺少条件,无法确定角B的值.sinA=8/17.

    S=1/2*bcsinA=2bc-(b^2+c^2-a^2)=2bc(1-cosA)====>sinA=4-4cosA===>cosA=1-sinA/4===>

    sin^2A+(1-sinA/4)^2=1===>sinA/2*(17/8*sinA-1)=0 (sinA>0)===>sinA=8/17.

    (2)cosC=4/5===>sinC=3/5 sinA=8/17===>cosA=+-根号(1-64/17^2)=+-15/17

    A为钝角时,cosA=-15/17 ,cosB=-cos(A+C)=SinAsinC-cosAcosC=84/85 sinB=根号(1-84^2/85^2)=13/85 入=b/a=sinB/sinA=13/85*17/8=;A为锐角时 ,cosA=15/17

    cosB=-cos(A+C)=SinAsinC-cosAcosC=8/17*3/5-15/17*4/5=-36/85 SinB=根号(1-36^2/85^2)

    =77/85