解题思路:把代数式a2+b2+2a-4b+6变形为2个完全平方和的形式后即可判断.
∵a2+b2+2a-4b+6
=a2+2a+1+b2-4b+4+1
=(a+1)2+(b-2)2+1,
∴当a=-1,b=2时,代数式有最小值,为1.
点评:
本题考点: 配方法的应用;非负数的性质:偶次方.
考点点评: 本题考查了完全平方的形式及非负数的性质,难度一般,关键是正确变形为完全平方的形式后进行判断.
解题思路:把代数式a2+b2+2a-4b+6变形为2个完全平方和的形式后即可判断.
∵a2+b2+2a-4b+6
=a2+2a+1+b2-4b+4+1
=(a+1)2+(b-2)2+1,
∴当a=-1,b=2时,代数式有最小值,为1.
点评:
本题考点: 配方法的应用;非负数的性质:偶次方.
考点点评: 本题考查了完全平方的形式及非负数的性质,难度一般,关键是正确变形为完全平方的形式后进行判断.