大学定积分的计算题,求高人指点,最好写出详细的计算过程

1个回答

  • 先求出不定积分,需用万能换元法

    令z = tan(x/2),dx = 2dz/(1 + z²),sinx = 2z/(1 + z²)

    ∫ 1/(2 + sinx) dx

    = ∫ [2/(1 + z²)]/[2 + (2z)/(1 + z²)] dz

    = ∫ 1/[(1 + z²) + z] dz

    = ∫ 1/[(z + 1/2)² + 3/4] dz

    = (2/√3)arctan[(z + 1/2) · 2/√3] + C

    = (2/√3)arctan[(2tan(x/2) + 1)/√3] + C

    分区间,注意若ƒ(x) = 1/(2 + sinx),ƒ(0) = ƒ(π) = ƒ(2π)

    F(x) = (2/√3)arctan[(2tan(x/2) + 1)/√3]

    ∫(0→2π) 1/(2 + sinx) dx

    = ∫(0→π) 1/(2 + sinx) dx + ∫(π→2π) 1/(2 + sinx) dx

    = [F(π) - F(0)] - [F(2π) - F(π)],x = π是间断点,分左右极限做

    = [lim(x→0) F(x) - lim(x→π⁺) F(x)] - [lim(x→2π) F(x) - lim(x→π⁻) F(x)]

    = [π/(3√3) - (- π/√3)] - [π/(3√3) - π/√3]

    = 2π/√3