首先判断定义域
定义域 x∈R 满足关于原点对称.
f(x)
= log(a ,x + √(x² + 1) ) (逗号前面的表示底数,后面的表示真数)
= log(a ,√(x² + 1) + x )
f(-x)
= log(a ,√(x² + 1) - x )
f(x) + f(-x)
= log(a ,√(x² + 1) + x ) + log(a ,√(x² + 1) - x )
= log(a , 1)
= 0
所以 f(-x) = -f(x)
所以原函数为奇函数.
首先判断定义域
定义域 x∈R 满足关于原点对称.
f(x)
= log(a ,x + √(x² + 1) ) (逗号前面的表示底数,后面的表示真数)
= log(a ,√(x² + 1) + x )
f(-x)
= log(a ,√(x² + 1) - x )
f(x) + f(-x)
= log(a ,√(x² + 1) + x ) + log(a ,√(x² + 1) - x )
= log(a , 1)
= 0
所以 f(-x) = -f(x)
所以原函数为奇函数.