(1)证明:如答图所示,连接B 1D 1,
在△C 1B 1D 1中,C 1E=EB 1,C 1F=FD 1,
∴EF ∥ B 1D 1,且EF=
1
2 B 1D 1,
又A 1A
∥
. B 1B,A 1A
∥
. D 1D,∴B 1B
∥
. D 1D,
∴四边形BB 1D 1D是平行四边形.
∴B 1D 1∥ BD,EF ∥ BD,
∴E、F、D、B四点共面
(2)由AB=a,知BD=B 1D 1=
2 a,EF=
2
2 a,
DF=BE=
B
B 21 + B 1 E 2 =
a 2 + (
a
2 ) 2 =
5
2 a ,
过F作FH⊥DB于H,则DH=
DB-EF
2 =
2
4 a
∴FH=
D F 2 -D H 2 =
5
4 a 2 -
2
16 a 2 =
18
16 a 2 =
3
2
4 a
四边形的面积为 S EFBD =
1
2 (EF+BD)×FH=
1
2 (
2
2 a+
2 a)×
3
2
4 a =
1
2 ×
3
2
2 ×
3
2
4 a 2 =
9
8 a 2