1.将分母cosθ提出来,在0到2π积分,得:∫(cosθ/(a*cosθ+b))dθ=2π/a -∫(b/a^2)*1/(cosθ+b/a))dθ
2.对于∫(b/a^2)*1/(cosθ+b/a))dθ=(b/a^2)∫(1/(cosθ+b/a))dθ,为简便设b/a=c,其积分为∫(1/(cosθ+b/a))dθ=2π*csgn(-1+c/(-1+c^2)^(1/2))/(-1+c^2)^(1/2).
3.显然|c|>1的时候,此积分才有意义,而对于csgn(-1+c/(-1+c^2)^(1/2)),在c>1时它=1,c