∫【0到π/2】(sinx^10-cosx^10)dx/(5-sinx-cosx)
=∫【0到π/2】sinx^10dx/(5-sinx-cosx)-∫【0到π/2】cosx^10dx/(5-sinx-cosx)
注意 ∫【0到π/2】cosx^10dx/(5-sinx-cosx) 做变换 x=π/2-y
可以得到 ∫【0到π/2】sinx^10dx/(5-sinx-cosx)=∫【0到π/2】cosx^10dx/(5-sinx-cosx)
所以原式=0
∫【0到π/2】(sinx^10-cosx^10)dx/(5-sinx-cosx)
=∫【0到π/2】sinx^10dx/(5-sinx-cosx)-∫【0到π/2】cosx^10dx/(5-sinx-cosx)
注意 ∫【0到π/2】cosx^10dx/(5-sinx-cosx) 做变换 x=π/2-y
可以得到 ∫【0到π/2】sinx^10dx/(5-sinx-cosx)=∫【0到π/2】cosx^10dx/(5-sinx-cosx)
所以原式=0