(1)
f(0)=(n-1)/(2+m)=0 ==> n=1
故 f(x)=(1-2^x)/(2*2^x+m)
f(-x)=(1-2^(-x))/(2^(1-x)+m)
=(2^x-1)/(2+m*2^x)
=-f(x)
=-(1-2^x)/(2*2^x+m)
==> 2+m*2^x=2*2^x+m
==> m=2
故 y=f(x)=(1-2^x)/(2*2^x+2)
对于 s x>tx-2
x(t-1)
(1)
f(0)=(n-1)/(2+m)=0 ==> n=1
故 f(x)=(1-2^x)/(2*2^x+m)
f(-x)=(1-2^(-x))/(2^(1-x)+m)
=(2^x-1)/(2+m*2^x)
=-f(x)
=-(1-2^x)/(2*2^x+m)
==> 2+m*2^x=2*2^x+m
==> m=2
故 y=f(x)=(1-2^x)/(2*2^x+2)
对于 s x>tx-2
x(t-1)