1/(n^2+n)=1/n(n+1)=1/n-1/(n+1)
1/(m^2+m)+1/[(m+1)^2+(m+1)]+…+1/(n^2+n)
=1/m-1/(m+1)+1/(m+1)-1/(m+2)+...+1/n-1/(n+1)
=1/m-1/(n+1)=1/23=(23-1)/23*22
m=22,n+1=23*22=506,n=505
m+n=527.
1/(n^2+n)=1/n(n+1)=1/n-1/(n+1)
1/(m^2+m)+1/[(m+1)^2+(m+1)]+…+1/(n^2+n)
=1/m-1/(m+1)+1/(m+1)-1/(m+2)+...+1/n-1/(n+1)
=1/m-1/(n+1)=1/23=(23-1)/23*22
m=22,n+1=23*22=506,n=505
m+n=527.