an=Sn-S(n-1)
=2^n-1-[2^(n-1)-1]
=2^n-2^(n-1)
=2^(n-1)
因此可以退出a1=2^0=1,an为公比=2的等比数列.
设数列bn=1/(anan+1),则Sbn=1/(a1a2)+1/(a2a3)+…+1/(anan+1)为bn的前n项和.
根据前面的推导将a1,an代入bn,可以得出bn=1/[2^(n-1)*2^n]= 2^{-(2n-1)};
则b1=1/2
公比q=bn/b(n-1) = 2^{-[2n-1]+[2(n-1)-1]} = 2^(-2)=1/4;
由此可得Sbn为b1=1/2,公比q=1/4的等比数列的前n项和;
根据等比数列公式,当q不等于1时
Sbn=b1(1-q^n)/(1-q)
=(1/2)[1-2^(-2n)]/(1-1/4)
=2[1-4^{-n)]/3