一重积分的几何意义是求曲边梯形的面积,二重积分求的是空间几何体的体积,三重积分呢?它的数学上的几何意义是什么,别告诉我表

2个回答

  • 你说的不完全对,二重积分的几何意义并不是空间几何体的体积.在XOY平面外有一曲面z=f(x,y),该曲面在XOY平面的投影为D,那么该曲面与XOY平面为上下底的柱体体积为∫∫f(x,y)dxdy所以一重积分是求曲线下与x轴所成图形的面积,二重积分是曲面下与XOY平面所成几何体的体积 那么三重积分呢,则是有两曲面f(x,y,z)和g(x,y,z),求两曲面之间所成几何体的体积,其中z的上下限分别为f(x,y),g(x,y)接着解释你第二个问题:你回想怎么求曲边梯形面积呢?将梯形的高dx累加,dx为无限小时求极限,就是一重积分.二重积分一样,曲面柱体体积怎么求呢?体积=底面积*高.底面积就是dS,高就是z函数值,而dS等于x轴微元乘以y轴微元,就是把x和y的dxdy都趋于无限小,dS=dxdy,因为就是小微元矩形的面积.累加求极限就是二重积分