a(n+1)+a(n+2)+...a(2n)
=(a1+a2+..a(2n))-(a1+a2+..an)
=(2n(2n+1)(4n+1)-n(n+1)(2n+1))/6
=(2n+1)(2n(4n+1)-n(n+1))/6
=(2n+1)( 7n^2+n)/6
Sn=n(2n+1)(7n+1)/6/((7n+1)/6)
=n(2n+1)
bn=Sn-S(n-1)=n(2n+1)-(n-1)(2n-1)=2n^2+n-(2n^2-3n+1)=
4n-1
q=2^(-bn)/2^(-b(n-1))=2^(1-4n-(1-4(n-1)))=2^(-4)=1/16
Tn=2^(-b1)*(1-q^n)/(1-q)>31/240
(1-q^n)/(1-q)>31/30
(1-(1/16)^n)>31/32
(1/16)^n1