设圆O与AB,AC,BC切于D,E,F,连OD,OE,OF
∴OD=OE=OF=r
∵S△ABC=S△OAB+S△OAC+S△OBC
∴S=(1/2)AB×OD+(1/2)AC×OE+(1/2)BC×OF=(1/2)AB×r+(1/2)AC×r+(1/2)BC×r=(1/2)(AB+AC+BC)×r
∴r=2S/(AB+AC+BC)=2S/l
设圆O与AB,AC,BC切于D,E,F,连OD,OE,OF
∴OD=OE=OF=r
∵S△ABC=S△OAB+S△OAC+S△OBC
∴S=(1/2)AB×OD+(1/2)AC×OE+(1/2)BC×OF=(1/2)AB×r+(1/2)AC×r+(1/2)BC×r=(1/2)(AB+AC+BC)×r
∴r=2S/(AB+AC+BC)=2S/l