解题思路:(1)求出点A的坐标,利用顶点式求出抛物线的解析式;
(2)①首先确定点E为Rt△BEF的直角顶点,相似关系为:△BAO∽△BFE;如答图2-1,作辅助线,利用相似关系得到关系式:BH=4FH,利用此关系式求出点E的坐标;
②首先求出△ACD的面积:S△ACD=8;若S△EFG与S△ACD存在8倍的关系,则S△EFG=64或S△EFG=1;如答图2-2所示,求出S△EFG的表达式,进而求出点F的坐标.
(1)直线AB的解析式为y=2x+4,
令x=0,得y=4;令y=0,得x=-2.
∴A(-2,0)、B(0,4).
∵抛物线的顶点为点A(-2,0),
∴设抛物线的解析式为:y=a(x+2)2,
点C(0,-4)在抛物线上,代入上式得:-4=4a,解得a=-1,
∴抛物线的解析式为y=-(x+2)2.
(2)平移过程中,设点E的坐标为(m,2m+4),
则平移后抛物线的解析式为:y=-(x-m)2+2m+4,
∴F(0,-m2+2m+4).
①∵点E为顶点,∴∠BEF≥90°,
∴若△BEF与△BAO相似,只能是点E作为直角顶点,
∴△BAO∽△BFE,
∴[OA/EF=
OB
BE],即[2/EF=
4
BE],可得:BE=2EF.
如答图2-1,过点E作EH⊥y轴于点H,则点H坐标为:H(0,2m+4).
∵B(0,4),H(0,2m+4),F(0,-m2+2m+4),
∴BH=|2m|,FH=|-m2|.
在Rt△BEF中,由射影定理得:BE2=BH•BF,EF2=FH•BF,
又∵BE=2EF,∴BH=4FH,
即:4|-m2|=|2m|.
若-4m2=2m,解得m=-[1/2]或m=0(与点B重合,舍去);
若-4m2=-2m,解得m=[1/2]或m=0(与点B重合,舍去),此时点E位于第一象限,∠BEF为钝角,故此情形不成立.
∴m=-[1/2],
∴E(-[1/2],3).
②假设存在.
联立抛物线:y=-(x+2)2与直线AB:y=2x+4,可求得:D(-4,-4),
∴S△ACD=[1/2]×4×4=8.
∵S△EFG与S△ACD存在8倍的关系,
∴S△EFG=64或S△EFG=1.
联立平移抛物线:y=-(x-m)2+2m+4与直线AB:y=2x+4,可求得:G(m-2,2m).
∴点E与点G横坐标相差2,即:|xG|-|xE|=2.
如答图2-2,S△EFG=S△BFG-S△BEF=[1/2]BF•|xG|-[1/2]BF|xE|=[1/2]BF•(|xG|-|xE|)=BF.
∵B(0,4),F(0,-m2+2m+4),∴BF=|-m2+2m|.
∴|-m2+2m|=64或|-m2+2m|=1,
∴-m2+2m可取值为:64、-64、1、-1.
当取值为64时,一元二次方程-m2+2m=64无解,故-m2+2m≠64.
∴-m2+2m可取值为:-64、1、-1.
∵F(0,-m2+2m+4),
∴F坐标为:(0,-60)、(0,3)、(0,5).
综上所述,S△EFG与S△ACD存在8倍的关系,点F坐标为(0,-60)、(0,3)、(0,5).
点评:
本题考点: 二次函数综合题.
考点点评: 本题是二次函数压轴题,涉及运动型与存在型问题,难度较大.第(2)①问中,解题关键是确定点E为直角顶点,且BE=2EF;第(2)②问中,注意将代数式表示图形面积的方法、注意求坐标过程中方程思想与整体思想的应用.