∵a.b.c成等差数列
∴2b=a+c
△ABC的面积:
S=1/2*sinB*ac=√3
=>1/2*sin60°*ac=√3
=>1/2*√3/2*ac=√3
=>ac=4
a²+c²=(a+c)²-2ac
=4b²-2*4=4b²-8
余弦定理:
cosB=(a²+c²-b²)/(2ac)
=>1/2=(4b²-8-b²)/(2*4)
=>1/2=(3b²-8)/8
=>3b²-8=4
=>3b²=12
=>b²=4
=>b=2或b=-2(舍去)
∴b=2
∵a.b.c成等差数列
∴2b=a+c
△ABC的面积:
S=1/2*sinB*ac=√3
=>1/2*sin60°*ac=√3
=>1/2*√3/2*ac=√3
=>ac=4
a²+c²=(a+c)²-2ac
=4b²-2*4=4b²-8
余弦定理:
cosB=(a²+c²-b²)/(2ac)
=>1/2=(4b²-8-b²)/(2*4)
=>1/2=(3b²-8)/8
=>3b²-8=4
=>3b²=12
=>b²=4
=>b=2或b=-2(舍去)
∴b=2