解析:
1、∵ 题目满足 2R×((sinA)^2-(sinC)^2)=(√2a-b)×sinB,
又由正弦定理可得 a/sinA=b/sinB=c/sinC=2R,
代入上式可得 a²-c²+b²=√2 ab,
由余弦定理可得 cosC=(a²+b²-c²)/2ab =√2/2,
所以∠C=45°.
2、由上一问可知 c=√2R,
面积最大的时候也就是△ABC是等腰三角形且AC=BC的时候,
此时有 高=R+√2R/2=(1+√2/2)R,
所以面积最大为 S=1/2*(√2R)(1+√2/2)R,
即 (1+√2)R² / 2 .
希望可以帮到你、
不明白可以再问、