(1)原式=lim(x->0)[(∫cos(t^2)dt)'/(x^2)'] (0/0型极限,应用罗比达法则)
=lim(x->0)[cos(x^4)]
=1;
(2)原式=lim(x->0)[((∫e^(t^2)dt)^2)'/(∫te^(2t^2)dt)'] (0/0型极限,应用罗比达法则)
=lim(x->0)[(2e^(x^2)∫e^(t^2)dt)/(xe^(2t^2))]
=lim(x->0)[(2/e^(x^2))((∫e^(t^2)dt)/x)]
={lim(x->0)[2/e^(x^2)]}*{lim(x->0)[(∫e^(t^2)dt)/x]}
=2*lim(x->0)[(∫e^(t^2)dt)/x]
=2*lim(x->0)[(∫e^(t^2)dt)'/(x)'] (0/0型极限,应用罗比达法则)
=2*lim(x->0)[e^(x^2)]
=2.