lim(x->0) f(x) /x ( 0/0 ,=> f(0) =0 )
=lim(x->0) f'(x)
=f'(0) =1
lim(x->0) [√(1+f(x) ) - 1]/x (0/0)
lim(x->0) f'(x) /[2√(1+f(x) )]
=f'(0)/[2√(1+f(0) )]
=1/2
lim(x->0) f(x) /x ( 0/0 ,=> f(0) =0 )
=lim(x->0) f'(x)
=f'(0) =1
lim(x->0) [√(1+f(x) ) - 1]/x (0/0)
lim(x->0) f'(x) /[2√(1+f(x) )]
=f'(0)/[2√(1+f(0) )]
=1/2