(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由. (2)结论应用:①如

1个回答

  • (1)作CE⊥AB于E,DF⊥AB于F,则CE ∥ DF,

    ∵S △ABC=S △ABD

    1

    2 AB?CE=

    1

    2 AB?DF,CE=DF.

    ∴四边形CDFE为矩形,AB ∥ CD;

    (2)连接MF、NE,过M作MP⊥EF,过N作NQ⊥EF,则MP ∥ NQ,

    ∴S △MEF=

    1

    2 ME?OE=

    1

    2 k;S △NEF=

    1

    2 NF?OF=

    1

    2 k,

    ∴S △MEF=S △NEF,且同底边EF,

    ∴M,N到EF的距离相等,即PM=NQ,

    ∴四边形MPQN为平行四边形,

    ∴MN ∥ EF.