解题思路:设共有x队进行了比赛,每个队都进行了3场共3x2场,剩下的(x-6)个队进行单循环赛共(x−6)(x−7)2场,由此列方程解答即可.
设共有x队进行了比赛,根据题意列方程得,
[3x/2]+
(x−6)(x−7)
2=33,
解得x1=12,x2=-2(不合题意舍去),
答:共进行了33场比赛,共有,12个队.
故答案为:12.
点评:
本题考点: 一元二次方程的应用.
考点点评: 此题主要利用n个队进行单循环赛场次的计算方法:n(n−1)2(因为场数重复了一次,即除以2),以及运用一元二次方程解答实际问题.