a(n)=a+(n-1)d
a(2001)=m ==>a+2000d=m
a(m)=2001 ==>a+(m-1)d=2001
两式相减得 (2001-m)d=(m-2001), 所以d=-1
a(m+p)=a(m)+(p-1)d=2001+(p-1)d=2001-(p-1)=2002-p
又p>am=2001, 所以p>=2002, a(m+p)=2002-p<=0.
a(n)=a+(n-1)d
a(2001)=m ==>a+2000d=m
a(m)=2001 ==>a+(m-1)d=2001
两式相减得 (2001-m)d=(m-2001), 所以d=-1
a(m+p)=a(m)+(p-1)d=2001+(p-1)d=2001-(p-1)=2002-p
又p>am=2001, 所以p>=2002, a(m+p)=2002-p<=0.