解题思路:用配方法将圆的方程转化为标准方程,求出圆心坐标和半径,设直线方程为y=kx,求出圆心到直线的距离,利用直线和圆相交所成的直角三角形知识求解即可.
直线方程为y=kx,
圆x2+y2-2x-4y+4=0即(x-1)2+(y-2)2=1
即圆心坐标为(1,2),半径为r=1
因为弦长为2,为直径,故y=kx过圆心,所以k=2
所以该直线的方程为:y=2x
故答案为:2x-y=0
点评:
本题考点: 直线与圆相交的性质.
考点点评: 本题考查直线和圆的相交弦长问题,属基础知识的考查.注意弦长和半径的关系.