1.奇数项:(5*1+1)+(5*3+1)+...+[5*(2m-1)+1]
=5*(1+3+...+2m-1)+m
=5m^2+m
偶数项:[2^(2/2)+2^(4/2)+...+2^(2m/2)]
=(2^1+2^2+...2^m)
=2^(m+1)-2
相加得:原式=5m^2+2^(m+1)+2m-2
2.因为3t*Sn-(2t+3)S(n-1)=3t,3t*[S(n-1)+an]-(2t+3)S(n-1)=3t
所以(t-3)S(n-1)+3tan=3t ①
(t-3)Sn+3ta(n+1)=3t ②
②-①得
(t-3)[Sn-S(n-1)]+3t[a(n+1)-an]=0=
(t-3)(an)+3t[a(n+1)-an]=0
所以a(n+1)/an=(2t+3)/3t
即{an}是等比数列.